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a  b  s  t  r  a  c  t

The  interconversion  of  the radial  motional  modes  in a  Penning  trap (magnetron  and  cyclotron  modes)  by
an  external  quadrupolar  rf-field  with  a frequency  near  the  true  cyclotron  frequency  ωc plays  an  important
role in  the  measurement  cycle  of  Penning  trap  mass  spectrometry.  Ions  to be measured  are  prepared
in  a  state  of magnetron  motion  which  is  then  resonantly  converted  into  cyclotron  motion.  The data
analysis  is  usually  carried  out under  the  assumption  that  the  initial  motional  state  of  the  ions  has  been
a  pure  magnetron  state.  In reality,  however,  a  small  component  of cyclotron  motion  is  always  present
in the  ion’s  initial  motional  state.  This  component  introduces  a dependence  on the  initial  phases  of  the
quadrupolar  rf-field  and  of  the  magnetron  and  cyclotron  oscillators.  This  paper  explores  how  excitation
curves,  conversion  times  and  conversion  line  shapes  depend  on  these  phases  and  on the  initial  radius
of the  cyclotron  motion.  Since  most  experiments  cannot  control  all  of  these  phases  the  data  must  be
interpreted  in  terms  of  phase-averaged  quantities.  These  are  slightly  more  general  than  those  for  pure
magnetron  motion.  Most  importantly,  there  are  no  shifts  of  the  maxima  and  minima  of  phase-averaged
conversion  profiles  compared  to those  predicted  with  pure  magnetron  motion  in  the  initial  state,  so  that
the mass  determinations  are  not  affected.  The  theory  predicts  experimental  data  points  to  fall  not  on  a
nterconversion of motional modes
uadrupole excitation
amsey excitation

mathematical  curve,  as  for pure  magnetron  motion  in  the  initial  state,  but  within  bands  about  the  phase-
averaged  curves,  with  a finite  width  roughly  proportional  to the  radius  of  the  initial  cyclotron  motion.
The  scattering  of  data  points  can give  rise to a loss of  contrast  of measured  conversion  line  shapes.  The
component  of  cyclotron  motion  in  the  initial  state  introduces  an  additional  parameter  into  the  analytical
expressions  for  conventional  and  Ramsey  type  excitation  that  could  in  some  cases  be  useful  for  data
fitting.
. Introduction

In recent years Penning traps have developed into important
ools for high-precision mass spectrometry on charged particles
1,2]. Penning traps confine charged particles by means of a static
lectric quadrupole field and a strong homogeneous magnetic field
, the ion motion in the trap is characterized by three oscillator fre-
uencies, the axial frequency ωz, the modified cyclotron frequency
+, and the magnetron frequency ω− [3–5]. The mass m of a particle
ith electric charge q is determined by a precise measurement of

he ‘true’ cyclotron frequency, ωc = qB/m.  For the ideal hyperbolic
enning trap we have ω+ + ω− = ωc.

For a mass determination one collects the results of measure-

ents performed on several hundreds of single ions. Commonly

he first step is the insertion of the ions near the trap center, fol-
owed by an enlargement of their magnetron radius to a desired
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387-3806/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2011.08.022
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initial value R−(0) by means of a pulse of dipolar rf-radiation with
the frequency of the magnetron oscillator [6,7]. Alternatively the
ion injection can be performed by the more recent “Lorentz steerer”
technique [8].  In either case ideally one aims at preparing the ions in
a state of pure magnetron motion (i.e., with initial cyclotron radius
R+(0) = 0), but practically a small component of cyclotron motion
will always be left, R−(0) � R+(0) > 0. Subsequently an azimuthal
electric quadrupole field with a frequency ωq close to the cyclotron
frequency ωc is applied. At the resonance, i.e.,  for ωq ≈ ωc the mag-
netron motional mode is converted into the cyclotron motional
mode [6,9,10]. Full conversion takes place for the proper product of
excitation time and amplitude of the quadrupolar field. A frequency
scan exhibits a resonance peak at the true cyclotron frequency ωc.
A time-of-flight technique (TOF-ICR) [11] is used for the detection
of the ions. For more details see e.g., [12].

The resonant conversion of an ion’s magnetron motion into

cyclotron motion by a pulse of external quadrupolar rf-radiation
is the crucial step in the measurement procedure. Experimental
data are usually compared to theoretical curves that are deduced
from the assumption of pure magnetron motion in the initial state.

dx.doi.org/10.1016/j.ijms.2011.08.022
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:Martin.Kretzschmar@uni-mainz.de
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n this case the phases of the radiation field and of the mag-
etron and cyclotron oscillators drop out from all mathematical
xpressions.

In practice it is unavoidable that a small component of cyclotron
otion has survived the preparation of the initial state. All results

hen depend on the initial value of the radius R+(0) of the cyclotron
otion and on a specific combination of the above mentioned

hases. This study investigates manifestations and consequences of
his fact for conventional one-pulse quadrupolar excitation and for
wo-pulse Ramsey excitation. We  find that conversion line shapes
re phase dependent and are in general asymmetric with respect
o the central peak. The position of the central peak is shifted,
ependent on the phase, by small amounts away from the cyclotron
requency ωc. Since most experiments cannot control the phase of
he cyclotron motion their theoretical interpretation requires an
verage over this phase and over the probability distribution of the
nitial radius R+(0). Fortunately, the central peak of the averaged
onversion line shape occurs exactly at the cyclotron frequency ωc,
o that mass determinations are not adversely affected. The aver-
ged line shape is symmetric with respect to the central peak, and
or both one-pulse and two-pulse excitation a generalized formula
elates the averaged conversion line shape to the conventional for-
ulas for an initial pure magnetron motional state (see Eqs. (30)

nd (41) below). These formulas offer the expectation value 〈R2+(0)〉
s a possible new parameter for data fitting. Another consequence
f the phase dependence is the fact that experimental data points
re predicted to fall into bands of finite width about the phase-
veraged conversion profiles, so that data plots have a somewhat
iffuse appearance. The width of these bands is to lowest order pro-
ortional to R+(0). Cooling the cyclotron motion in the initial state
an therefore be essential for obtaining well-defined and precise
onversion profiles.

This paper also serves as a preparatory study for a major theoret-
cal investigation of the interconversion of the motional modes by
xternal octupolar rf-fields, to be reported in future publications.
n this case analogous questions must be answered, but in a more
omplicated non-linear setting. With a similar motivation Ringle
t al. [14] have recently studied the phase-dependence of conver-
ion by quadrupolar rf-fields by simulations and in experiments.

The plan of the paper is as follows: in the next section we  sketch
he theoretical concepts underlying our approach. Starting from
uantum mechanical considerations we obtain an effective interac-
ion between the external quadrupolar rf-field and the ion moving
n the Penning trap that describes the conversion of excitation
uanta of the magnetron oscillator into quanta of the cyclotron
scillator with conservation of the total number of quanta. The
igorous solution of the ensuing equations of motion yields the
omplex oscillator amplitudes for the cyclotron and the magnetron
scillators in closed analytical form. From these we obtain an
xpression for the function n+(t, ı, �, g) = N+(t)/Ntot which tells us
hat fraction of all quanta in the system resides in the cyclotron

scillator, as a function of time t, detuning ı, phase �, initial radius
+(0), and coupling parameter g. This function is the basis for all
urther discussion. Section 3 studies the excitation function, i.e.,
he function n+ with detuning ı = 0. Sections 4 and 5 are devoted to
he conversion line shapes for one-pulse and two-pulse excitation,
espectively. Section 6 summarizes our conclusions.

. Mathematical framework
The ion motion in an ideal hyperbolic Penning trap is described
y three harmonic oscillators, denoted as cyclotron (+), magnetron
−), and axial (z) oscillators. The axial motion is of no importance for
his paper, the corresponding term will be omitted in the following.
ass Spectrometry 309 (2012) 30– 38 31

In the quantum mechanical formalism of the Heisenberg picture the
Hamiltonian for the two  azimuthal modes is given as

H0(t) = h̄ω+ a†
+(t) a+(t) − h̄ω− a†

−(t) a−(t), (1)

where ωk = 2� �k is the oscillator frequency and where ak(t) and
a†

k
(t) are annihilation and creation operators for the oscillator

quanta (k =+ , −).
An azimuthal quadrupolar rf-field acts on an ion in the Penning

trap in various ways. Depending on the frequency three resonant
cases can be distinguished: ωq = 2 ω+, ωq = 2 ω−, and ωq = ω+ + ω−
[13]. In the first case the rf-field amplifies or reduces the cyclotron
motion without affecting the magnetron oscillator, in the second
case it amplifies or reduces the magnetron motion without affect-
ing the cyclotron oscillator, and in the third case the quadrupolar
rf-field transfers excitation from the magnetron oscillator to the
cyclotron oscillator, and vice versa. This case, known as the ‘inter-
conversion of oscillator modes’, is the most important one and
shall be considered exclusively in the following. The interaction
of the ion with the quadrupolar rf-field is most clearly understood
in the quantum mechanical formalism where one can decompose
the interaction operator into a sum of terms for the processes men-
tioned [15]. By means of the ‘rotating wave approximation’ [16],
limiting the frequency ωq of the azimuthal quadrupolar rf-field to
a band around the cyclotron frequency ωc, the effective interaction
for the interconversion of modes can be isolated as

H1(t) = h̄g(e−i�q(t)a†
+(t)a−(t) + e+i�q(t)a†

−(t)a+(t)), (2)

where g is a coupling parameter with the dimension of a frequency
and proportional to the amplitude of the quadrupolar rf-field, and
where �q(t) = ωqt + �q is the phase of the quadrupolar rf-field at time
t, with �q = �q(0). This interaction has the remarkable property that
for each oscillator quantum that is annihilated a quantum of the
other oscillator is created, and vice versa. Thus the total number of
oscillator quanta in the system is conserved and is defined by the
starting values of the system at t = 0:

Ntot = N+(0) + N−(0) = N+(t) + N−(t) = a†
+(t) a+(t) + a†

−(t) a−(t).

(3)

The total Hamiltonian is H(t) = H0(t) + H1(t). It yields Heisenberg
equations of motion for the annihilation operators a±(t) and the
creation operators a†

±(t) that can be solved exactly [15,19]:

d
dt

a+(t) = −iω+a+(t) − ige−i�d(t)a−(t), (4)

d
dt

a−(t) = +iω−a−(t) − ige+i�d(t)a+(t). (5)

Equations for the creation operators are obtained by taking the
adjoints of these equations.

The quantum mechanical considerations serve to justify the
effective interaction, Eq. (2),  and the conservation law for the total
number of quanta in the system, Eq. (3).  From here on it is sufficient
to treat the ion motion in the Penning trap as a classical problem.
The transition to a classical description uses expectation values of
the quantum mechanical annihilation operators for ‘quasi-classical
states’, also known as ‘minimum uncertainty coherent oscillator
states’ |˛〉, where  ̨ is a complex number [16]. These expectation
values yield complex oscillator amplitudes ˛±(t) that can be con-
sidered as classical quantities and that shall be in the following the
basic physical quantities for our discussion, ([15] and Section 2.4 of
[19].
˛±(t) = 〈˛|a±(t)|˛〉, ˛∗
±(t) = 〈˛|a†

±(t)|˛〉. (6)

The asterisk means complex conjugation. The Heisenberg equa-
tions of motion for the annihilation operators a±(t) (4),  (5) translate
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nto first order differential equations for the complex oscillator
mplitudes ˛±(t) with the solution (see [19], Eqs. (46) and (47))

+(t) = e−i(ω++ı/2)t

[(
cos

ωRt

2
+ i

ı

ωR
sin

ωRt

2

)
˛+(0)

− i
2g

ωR
sin

ωRt

2
e−i�q ˛−(0)

]
, (7)

−(t) = e+i(ω−+ı/2)t

[
−i

2g

ωR
sin

ωRt

2
e+i�q ˛+(0)

+
(

cos
ωRt

2
− i

ı

ωR
sin

ωRt

2

)
˛−(0)

]
. (8)

Here ı = ωq − ωc denotes the detuning of the quadrupolar

f-field, and ωR =
√

4g2 + ı2 is the Rabi frequency of the inter-
onversion. Thus the time development of the complex oscillator
mplitudes is described, up to phase factors by the unitary matrix

′(t; ı, g)=

⎛
⎝cos

(
ωRt

2

)
+ i

ı

ωR
sin

(
ωRt

2

)
−i

2g

ωR
· sin

(
ωRt

2

)
−i

2g

ωR
· sin

(
ωRt

2

)
cos

(
ωRt

2

)
− i

ı

ωR
sin

(
ωRt

2

)
⎞
⎠ .

(9)

he initial values of the complex oscillator amplitudes ˛±(0) are
actorized into a modulus and a phase factor,

+(0) = |˛+(0)|  e−i�+ , (10)

−(0) = |˛−(0)|  e+i�− . (11)

e then deduce from Eqs. (7) and (8)

˛+(t)|2 = |(M′
11 · |˛+(0)|  + e−i�M′

12 · |˛−(0)|)|2, (12)

˛−(t)|2 = |(e+i�M′
21 · |˛+(0)|  + M′

22 · |˛−(0)|)|2, (13)

ith � = �q − �+ − �−. The initial phases always occur in this com-
ination.

For the practical application of these results it is useful to know
hat the instantaneous radii for the cyclotron and the magnetron

otion are given by

+(t) =
√

2h̄

mω1
|˛+(t)|, R−(t) =

√
2h̄

mω1
|˛−(t)|, (14)

ith ω1 = ω+ − ω− =
√

ω2
c − 2 ω2

z . The expectation value of Eq. (3)
hen becomes

Ntot〉 = ˛∗
+(t) ˛+(t) + ˛∗

−(t) ˛−(t) = mω1

2h̄

(
R2

+(t) + R2
−(t)

)
. (15)

or the study of the interconversion of modes the main interest
s in the fractions n± of oscillator quanta that are residing in the
yclotron and magnetron oscillators, respectively. These can now

n+(t, ı, �, g) =
∣∣∣∣
(

cos
(

ωRt

2

)
+ i

ı

ωR
sin

(
ωRt

2

))
·
√

n−(t, ı, �, g) =
∣∣∣∣−i e+i� 2g

ωR
· sin

(
ωRt

2

)
·
√

n0+ +
(

co
e expressed as

±(t) = 〈N±(t)〉
〈Ntot〉 = |˛±(t)|2

|˛+(0)|2 + |˛−(0)|2 = R2±(t)

R2+(0) + R2−(0)
. (16)
ass Spectrometry 309 (2012) 30– 38

We  observe n+(t) + n−(t) = 1. The initial values are

n0± = n±(0) = R2±(0)

R2+(0) + R2−(0)
. (17)

The time development of the fractions n±(t) can now be described
in terms of closed analytical expressions which are the basis of all
discussions in the following sections. For clarity we  also display the
parameters ı, �, and g on which these expressions depend:

− i e−i� 2g

ωR
· sin

(
ωRt

2

)
·
√

n0−

∣∣∣∣
2

, (18)

Rt

2

)
+ i

ı

ωR
sin

(
ωRt

2

))
·
√

n0−

∣∣∣∣
2

. (19)

For theoretical discussions the use of the dimensionless vari-
ables � = (2g/�) · t and � = ı/(2g) offers great advantages. Therefore
we display the fractions n± also in the dimensionless formulation:

n+(�, �, �) = n0+ + 1
1 + �2

sin2
(√

1 + �2�
�

2

)
(1 − 2 n0+)

−
[

sin �
1√

1 + �2
sin

(√
1 + �2��

)

+ cos �
�

1 + �2
sin2

(√
1 + �2�

�

2

)]
·
√

n0+n0−,

(20)

n−(�, �, �) = 1 − n+(�, �, �). (21)

We note that the last term in Eq. (20) is an odd function of �, i.e.,  it
changes sign under the substitution � ↔ − �. It is thus responsible
for asymmetric conversion line shapes, as discussed in detail below.
Similarly the second term is an odd function of � and changes sign
under the substitution � ↔ − �, thus preventing symmetry under
this exchange. Finally, integrating both sides of Eq. (20) over �
we see that the first term represents the phase-averaged function
n+(�, �) = (2�)−1 ∫ +�

−�
d� · n+(�, �, �).

3. One-pulse excitation functions

We  begin our study of the interconversion of the motional
modes by considering the special case that the quadrupolar radia-
tion has a frequency exactly equal to the true cyclotron frequency,
ωq = ωc, or equivalently ı = 0. Then we  denote the functions n±(t,
ı, �)|ı=0 as ‘excitation functions’ for the respective mode. Excita-
tion functions describe the progress of the conversion process after
the quadrupolar rf-field with the exact resonance frequency ωc has
acted for a time interval 	. Our general expressions for the fractions
n±, Eqs. (18) and (19), reduce for ı = 0 to

n+(	, ı = 0, �, g) =
∣∣cos (g	) ·

√
n0+ − i e−i� · sin (g	) ·

√
n0−

∣∣2
,

(22)

∣ √ √ ∣2

n−(	, ı = 0, �, g) = ∣−i e+i� · sin (g	) · n0+ + cos (g	) · n0− ∣ ,

(23)

or in dimensionless notation with � = 0
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Fig. 1. Plot of the surface n+(�, � = 0, �) over two Rabi periods (0 ≤ � ≤ 4) and over
−�  ≤ � ≤ + �. Cuts along lines of constant phase � represent excitation functions for
the  cyclotron mode with phase � as function of the dimensionless time �. The thick
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Fig. 2. Projecting Fig. 1 into two dimensions the phase-dependent excitation func-
tions of the cyclotron mode fill the shaded areas. The phase-averaged excitation
function, Eq. (29), is represented by the solid black line. The dashed line is the
lack lines are at � = 1 and at � = 3. We  observe positive or negative delays �0(�) of
he  conversion maxima depending on whether 0 < � < � or −� < � < 0. The figure was
alculated with R+(0) = 0.25 R−(0).

+(�, � = 0, �) = n0+ + sin2
(

�
�

2

)
(1 − 2 n0+) − sin � sin

(
��

)
·
√

n0+n0−, (24)

−(�, � = 0, �) = 1 − n+(�, � = 0, �). (25)

Maxima and minima of the function n+(�, � = 0, �) are charac-
erized by the condition

d
d�

n+(�, � = 0, �) = (�/2) sin(��) (1 − 2 n0+) − � cos(��) sin �

·
√

n0+n0− = 0. (26)

If the initial state is a pure magnetron state then n0− = 1 and
+ = 0, so that n+(�, � = 0, �) = sin 2(��). We  have a Rabi oscillation
ith period 2, complete conversion of the initial magnetron state

nto a pure cyclotron state for � = 1, 3, 5, . . . and complete recon-
ersion into a pure magnetron state for � = 2, 4, 6, . . . Therefore the
ime unit � = 1 or equivalently 	c = �/(2g) is denoted as ‘conversion
ime’. In the general case, when n0+ /= 0, conversion maxima (k
dd integer) and conversion minima (k even integer) are found at
k(�) = k + �0(�), where

0(�) = 1
�

arctan
(

2 sin � ·
√

n0+n0−
n0− − n0+

)
, (27)

s a delay relative to the case with initially pure magnetron motion.
he delay function �0(�) depends on the phase � and on the initial
raction n0+ of cyclotron motion. Assuming n0+ � n0− we  have

0(�) ≈ 1
�

arctan
(

2 sin � · R+(0)
R−(0)

)

≈ 1
�

(
2 sin � · R+(0)

R−(0)
− 1

3

(
2 sin � · R+(0)

R−(0)

)3

+ . . .

)
. (28)

In leading approximation the delay is proportional to the ratio
+(0)/R−(0).
In Fig. 1 the delay function �0(�) has been illustrated by plotting
he surface n+(�, � = 0, �) over the (�, �)-plane. Cuts along the lines
f constant � represent the excitation function for that value of
he phase. We  see that the delay �0(�) is positive for 0 < � < � and
excitation function for a state of initially pure magnetron motion. The figure was
calculated with R+(0) = 0.25 R−(0).

negative for −� < � < 0. For 0 < � < � the conversion process starts
with the conversion of the initial component of cyclotron motion
into magnetron motion, thus causing a positive delay, then the con-
version of magnetron into cyclotron motion sets in. For −� < � < 0
the conversion of magnetron into cyclotron motion starts immedi-
ately, thus we have a negative delay. By projection of Fig. 1 along the
�-axis onto the (�, n+)-plane we  obtain Fig. 2 showing the phase-
averaged excitation function (solid line)

n+(�) = n0+ + sin2 (
��/2

)
(1 − 2 n0+) (29)

embedded into a shaded band that is generated by the excitation
functions for given values of �, where −� ≤ � ≤ + �. The width of
the band is determined by the maximum and minimum delay.

These figures have been calculated, like most other figures of this
paper, with an initial cyclotron radius R+(0) = 
 R−(0) with 
 = 0.25.
This rather large value was chosen to highlight the effects due to
a cyclotron component in the initial state. Although most authors
are not very specific about this detail of their experiments one may
expect that they prepare the initial state with a smaller component
of cyclotron motion. In a paper by Eliseev et al. [17] these authors
estimate 
 = 0.14.

Finally we  note that the average of the delay function �0(�)
over all phases −� ≤ � ≤ + � vanishes, independently of the ratio

 = R+(0)/R−(0). Therefore the phase-averaged conversion time is
� = 1, equivalent to 	c = �/(2g) as in the case of initially pure mag-
netron motion. Thus it seems reasonable to choose this pulse
duration also for our study of 1-pulse conversion line shapes in
the next section.

4. Conversion line shapes for 1-pulse excitation

Conversion profiles for 1-pulse excitation have been discussed
extensively by König et al. [18]. They pointed out the relevance
of the phase combination � = �q − �+ − �−, but did not explore the
phase dependence of conversion profiles in any detail. Recently
Ringle et al. [14] noticed that, depending on the value of �, conver-
sion profiles can become asymmetric. They supported this insight
by simulations and experiments.

We shall discuss conversion line shapes for a pulse duration
� = 1, equal to the phase-averaged conversion time. This guarantees
that after taking the average over the phase the maximal degree

of conversion is achieved. Keeping the phase � fixed and insert-
ing � = 1 into Eq. (20) we obtain the function n+(� = 1, �, � = const)
that describes the conversion result as a function of the detuning
parameter � when the phase has a given value �.
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Fig. 3. The figure shows conversion line shapes for conventional 1-pulse quadrupole
excitation for various values of the phase �, calculated with a ratio of initial radii

  ≈ 0.25R+(0)/R−(0). The curves are plots of n+(� = 1, �, � = const) as a function of the
detuning parameter �.
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Fig. 4. The central peak for 1-pulse excitation coincides with the exact resonance

a Gaussian distribution for R+(0) with a variance 〈R+(0) 〉 =

 R−(0), and in addition a random distribution of the phase �. We
can then simulate for a sample of N single ions the expected out-
come of an experiment. A simulation of data obtained by measuring

Fig. 5. The conversion profiles for fixed phase � (Fig. 3) are here plotted in a single
diagram. They fill the shaded region. The central resonance peak is defined not by
single curve, but by a band of finite width which is determined by the initial radius
of the cyclotron motion R+(0). This figure assumes R+(0) ≈ 0.25R−(0). The thick red
Fig. 3 shows conversion line shapes for different values of �.
ote that the line shapes are in general not symmetric under the

ubstitution � → − �. According to (20) such symmetry is obtained
nly for � = ± �/2, i.e.,  cos � = 0. Maximal asymmetry is found for

 = 0, ± �, i.e.,  sin � = 0. Due to the asymmetry the peak conversion
oes not occur exactly at the cyclotron frequency ωc (i.e., � = 0), but
ith some small detuning �a = ıa/(2g) /= 0 that is proportional to

he initial cyclotron radius R+(0). This is visible in Fig. 3, but much
ore clearly in Fig. 4.
It is of great interest to estimate the maximal shift of the peak

onversion. The shifted peak position is obtained by evaluating
he condition (d/d�)n+(�, �, �)|�=1,�=0 or � = 0 in the regime of � � 1
nd 
 = R+(0)/R−(0) � 1. The result is �a ≈ 
/(2(1 − 
2)). The rela-
ive frequency shift follows from ıa/ωc = �a · (2g/ωc). Remember
hat at resonance 2g is the Rabi frequency for interconversion,
g = ωR = 2� �R = 2�/(2	c). Fortunately, thanks to the simple struc-

ure of Eq. (20) the asymmetries cancel out when we  take the
position � = 0, marked by the heavy black line, only for phase � = ± �/2, otherwise
small shifts of the peak values toward both sides are observed. The figure shows a
plot of the surface n+(� = 1, �, �), assuming R+(0) = 0.25 R−(0).

average over all phases. By averaging over the phase � the right
hand side of (20) simplifies to

n+(�) = n0+ + 1
1 + �2

sin2
(√

1 + �2 �

2

)
(1 − 2 n0+) .  (30)

When drawn in the same plot the set of all conversion profiles
for −� ≤ � ≤ − � fills the shaded region shown in Fig. 5. The central
peak is represented by a band with a finite width that is determined
by the initial radius of the cyclotron motion R+(0). The width is gov-
erned by �a, the maximum shift of the central peak. The width of the
band shrinks to zero when 
 = R+(0)/R−(0) → 0, i.e.,  when the initial
state is pure magnetron motion. The phase-averaged conversion
profile, Eq. (30), is represented by the thick red line.

The foregoing discussions have assumed a given non-vanishing
initial value of the radius of the cyclotron motion. Of course, such
initial values are not only unknown in practice, they are also dis-
tributed over a certain range in a manner that depends on the
preparation of the initial state. Thus the situation will differ from
one experiment to the next. For definiteness let us therefore assume√

2

curve is the phase-averaged 1-pulse conversion profile, Eq. (30).
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Fig. 6. Ion cyclotron resonances obtained by simulation of the conversion data of
1500 single ions, assuming random distribution of the phase � and a Gaussian dis-
tribution for the initial value of the cyclotron radius R+(0). The three graphs show
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Fig. 7. The figure shows conversion line shapes for 2-pulse quadrupole excita-
tion (Ramsey excitation) for various values of the phase �.  The curves are plots of
n+(�0 = 5, �1 = 0.5, �, � = const .) as a function of the detuning parameter � for given
values of pulse duration (�1), waiting time (�0), and phase �. For the initial radii we

( )
he progressive deterioration of the resonance signal as the variance of the Gaus-
ian distribution is increased from 
 = 0.05 to 
 = 0.25. The black curve represents
he phase-averaged conversion profile for R+(0) = 
 R−(0), Eq. (30).

500 single ions is shown in Fig. 6 for three different values of the
ariance of the Gaussian distributions of the initial cyclotron radius.
ne observes an increasing degradation of the resonance signal as

he variance is varied from 
 = 0.05 to 
 = 0.25.

. Conversion line shapes for 2-pulse Ramsey excitation

Some time ago Bollen et al. [21] have suggested to use Ram-
ey’s method of separated oscillatory fields [20] in Penning trap
ass spectrometry. This proposal has recently been implemented

or practical use in experiments [19,22]. As expected the method
as brought a considerable increase in precision [23,24] and is now
stablished in many laboratories [25–29].  In the simplest version
he quadrupole field is acting on a trapped ion with two radiation
ulses of duration 	1 = 	c/2 = �/(4g), which are separated by a wait-

ng interval of duration 	0. With sufficiently long waiting intervals
he resonant conversion line shape becomes subdivided into a set of

arrow ‘Ramsey fringes’, as one sees by comparison of Figs. 3 and 7.

The theoretical description of the Ramsey excitation procedure
s obtained by applying our Eqs. (7),  (8) successively to the three
ime intervals with durations 	1, 	0, and 	1 (for details see [19]).
used R+(0) = 0.25 R−(0).

After completion of the Ramsey cycle the complex oscillator ampli-
tudes are given by

˛+(	0 + 2	1) = e−i(ω++ı/2)(	0+2	1) × [R′
11 ˛+(0) + e−i�qR′

12 ˛−(0)],

(31)

˛−(	0 + 2	1) = e+i(ω−+ı/2)(	0+2	1) × [e+i�qR′
21 ˛+(0) + R′

22 ˛−(0)],

(32)

where the R′
ik are matrix elements of the 2 × 2 Ramsey matrix
R′(	0, 	1, ı, g) = R′
11 R′

12
R′

21 R′
22

= M′(	1, ı, g) · M′(	0, ı, 0) · M′(	1, ı, g). (33)
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Fig. 8. Three fringes nearest to the resonance position � = 0, for 2-pulse Ramsey
excitation. The central peak coincides with the exact resonance position, marked by

experiment to lie not on a mathematical curve, but within a band
with a finite width, which is determined by the component of
cyclotron motion that was  present in the initial state. Thus we  may
expect experimentally observed Ramsey fringes to have a fuzzy and

Fig. 9. The conversion profiles for fixed phase � as plotted in Fig. 7 fill the shaded
6 M. Kretzschmar / International Journ

As a product of three unitary matrices the Ramsey matrix R′ is
tself unitary. Working out the matrix elements we obtain

′
11(	0, 	1, ı, g) = M′

11(	1, ı, g)M′
11(	0, ı, 0)M′

11(	1, ı, g)

+ M′
12(	1, ı, g)M′

22(	1, ı, 0)M′
21(	1, ı, g)

= cos
ı	0

2

(
cos ωR	1 + i

ı

ωR
sin ωR	1

)

+ i sin
ı	0

2

[
4g2

ω2
R

+ ı2

ω2
R

cos ωR	1+i
ı

ωR
sin ωR	1

]
,

(34)

′
12(	0, 	1, ı, g) = M′

11(	1, ı, g)M′
11(	0, ı, 0)M′

12(	1, ı, g)

+ M′
12(	1, ı, g)M′

22(	1, ı, 0)M′
22(	1, ı, g)

= −i
2g

ωR

[
cos

ı	0

2
sin ωR	1

+ ı

ωR
sin

ı	0

2
(cos ωR	1 − 1)

]
, (35)

′
21(	0, 	1, ı, g) = R′

12(	0, 	1, ı, g), (36)

′
22(	0, 	1, ı, g) = R′ ∗

11(	0, 	1, ı, g) = R′
11(	0, 	1, −ı, g). (37)

he asterisk in (37) denotes the complex conjugate.
From Eqs. (31) and (32) we can now obtain the fractions n±(	0,

1, ı, g) of quanta in the cyclotron and magnetron oscillators,
espectively,

+(	0, 	1, ı, �, g) =
∣∣R′

11

√
n0+ + e−i� R′

12

√
n0−

∣∣2
, (38)

−(	0, 	1, ı, �, g) =
∣∣e+i� R′

21

√
n0+ + R′

22

√
n0−

∣∣2
, (39)

ith � = �q − �+ − �−. These equations are easily translated into
epresentations in terms of the dimensionless variables � = (2g/�) 	
nd � = ı/(2g). When the initial state is a pure magnetron state
n0+ = 0, n0− = 1) the dependence on the phase � drops out and we
nd the well known result

+(	0, 	1, ı, g) =
∣∣R′

12(	0, 	1, ı, g)
∣∣2

= 4g2

ω2
R

[
cos

ı	0

2
sin ωR	1 + ı

ωR
sin

ı	0

2
(cos ωR	1 − 1)

]2

. (40)

As a first application let us consider Ramsey conversion profiles
or various given values of the phase �. To this end we first rewrite
q. (38) in terms of �0 = (2g/�)	0, �1 = (2g/�)	1, and � = ı/(2g), thus
btaining n+(�0, �1, �, �). The choice 2�1 = 1 represents one half
abi period and corresponds to a complete conversion of a pure
agnetron state into a pure cyclotron state. The conversion pro-

les are plots of the fraction n+(�0 = const, �1 = 0.5, �, � = const) with
he running variable �. In Fig. 7 we display eight such profiles for
hases varying over the range −� ≤ � ≤ + �. The waiting time has
een chosen to be �0 = 5, corresponding to 	0 = 10 	1, as in some
ctual experiments.

We note that the Ramsey fringe patterns are in general not
ymmetric with respect to the substitution � → − �. Symmetry is
btained only for � = ± �/2, i.e.,  cos � = 0, maximal asymmetry for

 = 0 and � = ± �, i.e.,  sin � = 0. At first sight the whole fringe pattern

ppears to be shifted from the exact resonance frequency ωc toward
he left or toward the right, depending on the phase �. It is therefore
ot immediately obvious how to identify the Ramsey fringe belong-

ng to the exact resonance frequency ωc without knowing the value
the  heavy black line, only for phase � = ± �/2, otherwise small shifts of the peak val-
ues  toward both sides are observed. The figure shows a plot of the surface n+(�0 = 5,
�1 = 0.5, �, �), assuming R+(0) ≈ 0.25 R−(0).

of the phase �. A closer inspection shows, however, that with vary-
ing � the envelope of the whole fringe pattern changes, while the
individual fringes stay more or less at their place. In other words,
we see a change of the maximum values of the fringes with varying
� in conjunction with minute changes of the fringe positions. This
is further illustrated in Fig. 8 which shows a 3D-plot of the surface
n+(�0 = 5, �1 = 0.5, �, �). As in the case of conventional one-pulse
excitation, the peak value of the fringe at the resonance position
occurs at � = 0 only for � = ± �/2, otherwise small deviations are
observed. A comparison with Fig. 4 shows that for Ramsey fringes
the shift is on a smaller scale than for one-pulse excitation.

Let us now combine all conversion profiles for −� ≤ � ≤ + � into
a single plot, corresponding to the projection of Fig. 8 along the
�-axis onto the (�, n+)-plane. Then the conversion profiles shall
fill the shaded regions in Fig. 9. Therefore, with a random choice
of the phase � the theory predicts data points obtained in an
region. The width of this band is proportional to the initial radius of the cyclotron
motion R+(0). This figure assumes R+(0) ≈ 0.25R−(0). The heavy black curve is the
phase-averaged Ramsey profile. The dashed line represents the Ramsey profile cal-
culated with the assumption that initially the ions are in a pure magnetron state,
i.e.,  R+(0) = 0.
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Fig. 10. Simulation of the data obtained from 3000 single ions, assuming a random
distribution of the phase � and a Gaussian distribution for the initial values of the

cyclotron radius R+(0), with variance
√

〈R+(0)2〉 = 0.25 R−(0). The solid curve is the
phase-averaged Ramsey profile for R+(0) = 0.25 R−(0), Eq. (41). The two  dashed lines
define the band into which all data points with R+(0) < 0.25 R−(0) are expected to
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Fig. 11. Dependence of simulated Ramsey profiles on the number of ions and on
the initial cyclotron radius. All graphs assume a random distribution of the phases
�  and a Gaussian distribution of the initial values of the cyclotron radius R+(0) with

variance
√

〈R+(0)2〉 = 
 R−(0). The definition of the Ramsey profiles is much better
for a sample with a large number (1500) of single ions than for one with a small
number (150). A wide distribution of the initial cyclotron radii causes fuzzy profiles
(b), or for small ion numbers, makes the profiles barely recognizable (d).
all.

iffuse appearance when a sizeable component of cyclotron motion
as present in the initial state. Next we average over the phase
. From Eq. (38) we obtain the phase-averaged Ramsey profile
s

+(�0, �1, �) =
∣∣R′

11

∣∣2
n0+ +

∣∣R′
12

∣∣2
n0−

= n0+ +
∣∣R′

12(�0, �1, �)
∣∣2

(1 − 2 n0+). (41)

In the last step we have used the unitarity of the Ramsey matrix

R′
11

∣∣2 +
∣∣R′

12

∣∣2 = 1 and n0− = 1 − n0+. Eq. (41) is a slight general-
zation of the well known formula (40) containing the additional
arameter n0+. The phase-averaged Ramsey profile is shown in
ig. 9 as the thick black curve within the shaded region. For compar-
son the profile expected for an initial state with pure magnetron

otion is also shown as a thin dashed line.
In the same way as for 1-pulse excitation one can simulate the

xpected outcome of a Ramsey type measurement, assuming a ran-
om distribution of the phases and a Gaussian distribution of the

nitial values of the cyclotron radius. Fig. 10 shows our result for
 sample of 3000 ions, assuming for the variance of the Gaussian

istribution
√

〈R+(0)2〉 = 
 R−(0) with 
 = 0.25. The solid line repre-
ents the phase-averaged Ramsey profile calculated from Eq. (41),
nd the dashed lines mark the boundaries of the band into which
ata points are expected to fall, when the initial cyclotron radius is
+(0) < 0.25 R−(0). The distribution of the data points over a band of
nite width causes a fuzzy appearance of the Ramsey profile, with
ccumulations near the maxima and minima of the Ramsey pro-
le. These accumulations are due to cyclotron radii R+(0) � 
 R−(0),
hich have high weight in the assumed Gaussian distribution of

+(0).
Several publications by the JYFLTRAP-collaboration have pre-

ented experimental data plots that show the features just
escribed, a wide scatter of the experimental data points about the
verage curve representing the Ramsey fringes and accumulations
ear the extrema of the Ramsey profile (Fig. 1 in [30], Fig. 2 in [31],
ig. 2 in [32], and others).

The number of ions available for one experiment is often much

maller than assumed for Figs. 6 and 10.  We  therefore compare
n Fig. 11 four simulations: for a large number (1500) and a
mall number (150) of ions, and for very small (
 = 0.01) and for
ather large (
 = 0.25) initial cyclotron radii. When the assumed
Gaussian distribution with variance
√

〈R+(0)2〉 = 
 R−(0) is very
narrow (
 = 0.01) the Ramsey profiles are well defined even for
small ion numbers (Fig. 11c). On the other hand, for a wide dis-
tribution of initial cyclotron radii ((
 = 0.25) the profiles are quite

fuzzy even for large ion numbers (Fig. 11b), and they are rather ill
defined for small ion numbers (Fig. 11d).
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. Conclusions

In this paper we have studied the resonant interconversion of
he radial motional modes in a Penning trap by one or two pulses
f an external quadrupolar rf-field, which is part of the mass spec-
rometric measurement cycle. Ideally ions are prepared in a state
f pure magnetron motion, which is then converted into cyclotron
otion. In real experiments, however, the initial motional states

hat one can prepare are predominantly magnetron motion, but
hey always contain a remaining small component of cyclotron

otion which is unknown or only poorly known. Our interest
ere centered on the relevance of this fact for the evaluation of
xperiments. We  have studied in detail conventional one-pulse
uadrupolar excitation as well as two-pulse Ramsey excitation.

We have shown that a non-vanishing component of cyclotron
otion induces phase-dependent phenomena, such as asymmet-

ic conversion profiles, shifts of conversion maxima and minima,
odified conversion times and so on. The phases of the cyclotron

nd of the magnetron oscillators, �+ and �−, and the phase
q of the quadrupolar rf-field always enter in the combination
 = �q − �+ − �−. Most experiments do not have control over the
hase �, because they cannot control the phase �+ of the cyclotron
scillator. Therefore, in most experiments the measured conversion
ine shapes, excitation curves, and conversion times are averages
ver the uniform distribution of the phase � and over the probabil-
ty distribution of the initial radii R+(0). The latter depends on the

ethod by which the ions were placed in the trap.
Phase-dependent shifts of the conversion maxima and minima

ancel out when we average over the phase �. Therefore phase-
veraged conversion line shapes have their maxima and minima
t exactly the same frequencies as conversion profiles obtained
ith an initial state of pure magnetron motion. Thus the precise
etermination of the resonance frequency ωc for mass spectromet-
ic purposes is not affected. On the other hand, experimental data
oints are expected to lie not on a mathematical curve, as for an

nitial state of pure magnetron motion, but within a band of finite
idth about the phase-averaged curve. The width of the band is

he larger, the larger the initial cyclotron radius R+(0) is. Both facts
ogether explain why experimental data sets often have a fuzzy and
iffuse appearance.

In summary, what have we learnt for the design of experiments?
a) Most importantly, the cyclotron frequency ωc determined from

 data set with a random phase distribution is the same as that
xpected in the ideal case (all ions initially in a state of pure mag-
etron motion). Therefore mass determinations are not adversely
ffected by the lack of knowledge of the phase �. (b) In the ideal case
initially pure magnetron motion) resonance curves are sharply
efined. Under real conditions (the initial motional state of the ions
ontains a cyclotron component) the resonance curve is smeared
nto a band with a finite width depending on the size of the
yclotron component in the initial state. There is still no shift of
he resonance position, but the resonance curve becomes fuzzy.
or high statistics experiments this may  still be tolerable, however
or low statistics the ensuing lack of definition of the resonance sig-

al may  become a problem. Our results underscore that a careful
reparation of the initial magnetron state of motion of the ions is

mportant for the quality of the experimental data. Cooling the ini-
ial component of cyclotron motion to a minimal value is rewarded

[

ass Spectrometry 309 (2012) 30– 38

with sharp conversion profiles for conventional one-pulse and for
two-pulse Ramsey excitation. (c) The strength of the expected ini-
tial cyclotron component provides a new parameter n0+ that may
be used in data fitting.
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